A strategy for tissue self-organization that is robust to cellular heterogeneity and plasticity.

نویسندگان

  • Alec E Cerchiari
  • James C Garbe
  • Noel Y Jee
  • Michael E Todhunter
  • Kyle E Broaders
  • Donna M Peehl
  • Tejal A Desai
  • Mark A LaBarge
  • Matthew Thomson
  • Zev J Gartner
چکیده

Developing tissues contain motile populations of cells that can self-organize into spatially ordered tissues based on differences in their interfacial surface energies. However, it is unclear how self-organization by this mechanism remains robust when interfacial energies become heterogeneous in either time or space. The ducts and acini of the human mammary gland are prototypical heterogeneous and dynamic tissues comprising two concentrically arranged cell types. To investigate the consequences of cellular heterogeneity and plasticity on cell positioning in the mammary gland, we reconstituted its self-organization from aggregates of primary cells in vitro. We find that self-organization is dominated by the interfacial energy of the tissue-ECM boundary, rather than by differential homo- and heterotypic energies of cell-cell interaction. Surprisingly, interactions with the tissue-ECM boundary are binary, in that only one cell type interacts appreciably with the boundary. Using mathematical modeling and cell-type-specific knockdown of key regulators of cell-cell cohesion, we show that this strategy of self-organization is robust to severe perturbations affecting cell-cell contact formation. We also find that this mechanism of self-organization is conserved in the human prostate. Therefore, a binary interfacial interaction with the tissue boundary provides a flexible and generalizable strategy for forming and maintaining the structure of two-component tissues that exhibit abundant heterogeneity and plasticity. Our model also predicts that mutations affecting binary cell-ECM interactions are catastrophic and could contribute to loss of tissue architecture in diseases such as breast cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel dynamic model of hematopoietic stem cell organization based on the concept of within-tissue plasticity.

OBJECTIVE At present, no dynamic quantitative models of stem cell organization are available that fulfill all criteria of the prevalent functional definition of hematopoietic stem cells and, at the same time, provide a consistent explanation of cell kinetic and functional stem cell heterogeneity, reversibility of cellular properties, self-organized regeneration after damage, fluctuating activit...

متن کامل

Tissue stem cells: definition, plasticity, heterogeneity, self-organization and models--a conceptual approach.

The classical definition of adult tissue stem cells (TSC) is fundamentally based on a functional perspective. A TSC is an undifferentiated cell, capable of proliferation, self-renewal, production of a large number of differentiated functional progeny, regenerating tissue after injury and a flexibility in the use of these options. Here, we discuss the necessity for amending this definition in th...

متن کامل

Features and Methods of Making Nanofibers by Electrospinning, Phase Separation and Self-assembly

One of the major challenges in the field of tissue engineering is the production of scaffolding in nano-scale. The study of structural-functional connections in pathological and normal tissues with biologically active alternatives or engineered materials has been developed. Extracellular Matrix (ECM) is a suitable environment consisting of gelatin, elastin and collagen types I, II and III, etc....

متن کامل

A Robust Model for a Dynamic Cellular Manufacturing System with Production Planning

In this paper, a robust optimization approach is proposed to design a dynamic cellular manufacturing system (DCMS) under uncertainty of processing time of products. In addition, a mathematical model considering cell formation, inter-cell design and production planning under a dynamic environment (i.e., product mix and demand are changed in each period) is presented. Therefore, reconfiguration b...

متن کامل

Reprogramming by cytosolic extract of human embryonic stem cells improves dopaminergic differentiation potential of human adipose tissue-derived stem cells

The extract of pluripotent stem cells induces dedifferentiation of somatic cells with restricted plasticity. In this study, we used the extract of human embryonic stem cells (hESC) to dedifferentiate adipose tissue-derived stem cells (ADSCs) and examined the impact of this reprogramming event on dopaminergic differentiation of the cells. For this purpose, cytoplasmic extract of ESCs was prepare...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 7  شماره 

صفحات  -

تاریخ انتشار 2015